【中2数学】一次関数を制する者は、期末テストを制す!

2025年08月28日 | お知らせ, 中学生

中学2年生の1学期期末テスト。
数学の大きなヤマ場となる単元、それが 一次関数 です。

この単元は、ただ公式を暗記しているだけでは得点に結びつきません。
「変化の割合?傾き?切片?よく分からない…」という生徒も多いはず。
でも、ここでつまずくと、この先の数学全体に大きく響いてきます。


一次関数の基本は「見える化」!

一次関数の考え方は、とてもシンプルです。

たとえば、こんな式:

y = 2x + 3

この式を見て、あなたはどんなイメージが浮かびますか?

ただ「覚える」だけの勉強では、何も見えてきません。
でも、式の構造を 視覚的にイメージ できるようになれば、急に面白くなってきます。


覚えるべき3つのキーワード

テスト前に、まずはこの3つを正確に覚えましょう。

① 変化の割合

言いかえれば「1増えたとき、どれだけ増えるか?」
→ 計算方法: 変化の割合=yの増加量xの増加量変化の割合 = \frac{yの増加量}{xの増加量}変化の割合=xの増加量yの増加量​

この「1あたりの増え方」を見抜く力は、文章題やグラフの問題で大活躍します。


② 傾き(aの部分)

式が y = ax + b の形になっていれば、aが傾きです。
「傾き」は、グラフがどれだけ急に上がっているか、または下がっているかを示す数値。

  • a > 0 → 右上がり
  • a < 0 → 右下がり
  • a = 0 → 横一直線(定数関数)

③ 切片(bの部分)

y軸と交わる点、すなわち x=0 のときの yの値です。
式の「+3」や「−5」の部分がこれにあたります。


「頭の中でグラフを描けるか?」が勝負の分かれ目!

グラフの問題でよくあるミスは、「とりあえず表を作って、点を打って、なんとなく線を引く」というやり方。

それでは意味がありません。

ポイントは…

  • 傾きがプラスかマイナスか
  • 切片がどこか
  • どの点を通るのか
  • xとyの関係がどんな動きをするか

これらを 頭の中でイメージできること が、一番大事です。


hal学習塾ではこう教えています

hal学習塾の授業では、ただ解き方を教えるだけでは終わりません。

  • グラフを「ストーリー」として理解する
  • なぜそうなるのかを「言葉」で説明できるようにする
  • 自分の手で式を作り、グラフを予想して、検証する

このプロセスを大切にしています。


定期テストは「パターン暗記」ではなく「意味理解」で差がつく!

一次関数の問題には、パターン化された出題も多くあります。
でも、どんなに問題集を繰り返しても、意味が分かっていなければ応用問題ではつまずいてしまいます。

逆に、意味を理解していれば、初見の問題でも戦える
これが、本物の学力です。


テスト直前のチェックリスト ✅

  1. 「変化の割合」の計算方法は完璧?
  2. 傾きと切片を式から読み取れる?
  3. y = ax + b の式をグラフにできる?
  4. グラフから式を逆に作れる?
  5. 文章問題を読んで、関係を式にできる?

これらができていれば、一次関数はもう怖くない!


保護者の皆様へ

一次関数は、今後の中学数学だけでなく、高校数学や理科の内容にも関わってきます。
このタイミングで基礎が抜けてしまうと、将来的に大きな差となって表れます。

hal学習塾では、理解→定着→応用までしっかりサポートいたします。
「できるようになった!」という自信が、次の単元への前向きな姿勢にもつながります。

この記事を読んだ方には、以下の記事もおすすめです。